
Fast recursive coding based on grouping of Symbols 
 

Nikolay Ponomarenko, Vladimir Lukin, Karen Egiazarian, Jaakko Astola 
 

Abstract — A novel fast recursive coding technique is proposed. It operates with only integer 
values not longer 8 bits and is multiplication free. Recursion the algorithm is based on indirectly 
provides rather effective coding of symbols for very large alphabets. The code length for the 
proposed technique can be up to 20-30% less than for arithmetic coding and, in the worst case it is 
only by 1-3% larger. 
 
Index Terms—Arithmetic coding, Huffman codes, data compression, fast algorithms. 
 
 1. Introduction 

 
 Data compression is the area of intensive research during recent decades. Alongside with 
design of new coding methods using more sophisticated context modeling, an actual task is fast 
coding method design. Arithmetic coding (AC) proposed by Rissänen [1], in opposite to easier 
realizable Huffman coding (HC) [2], provides considerably less code redundancy. However, 
essential computations in AC, especially for adaptive modeling [3], restrict its use in applications 
requiring high coding speed, e.g. in video-data compression.  

This stimulates designing different fast multiplication free AC algorithms [4,5] and fast 
algorithms for AC with adaptive modeling [6,7]. Another direction is the design of new coding 
methods faster than AC but having larger code redundancy [8].  

Recently an approach to coding speeding-up dealing with each symbol division into two parts 
where only one is coded (i.e. using AC) and the other is simply numerated has appeared. Then one 
has to code symbols of considerably less size alphabets than for original alphabet, this leads to 
coding speeding-up. 

Within this approach, two directions can be distinguished: the Moffat’s K-flat codes [9] and 
Ryabko’s techniques based on forming super-letters from symbols having almost equal occurrence 
probabilities [10,11]. If symbols can be divided into prefixes (beginnings) and suffixes (endings), 
then for Moffat’s codes equal length prefixes (they are numerated) and different length suffixes 
(that are coded) are used. Ryabko’s approach assumes such alphabet symbol grouping into super-
letters where super-letters have different lengths (coded) and all symbol suffixes for given super-
letter have equal lengths (numerated). This difference is illustrated by Fig. 1. 
 Both approaches provide considerable speeding-up with not essential increasing of code-
length, and have their own advantages. Moffat’s approach allows performing fast search in 
compressed data, but for our case Ryabko’s approach seems preferable. It can be successfully 
applied to block coding [12] and combined to both static and adaptive modeling [3] without 
increasing computations for used coding method.  

 Below, based on Ryabko’s approach, we propose a novel effective recursive coding 
technique (further RCGS - Recursive Coding based on Grouping of Symbols) which implies only 
symbol numeration. This technique operates with only data not larger 8 bits. For this technique 
there is no necessity in using AC or another “external” coding at final stage as for methods in 
[9,11]. 



Prefix Suffix 

N
um

er
at

ed
 

C
od

ed
 

Prefix Suffix 

N
um

er
at

ed
 

Super 
Letter 1

Super 
Letter 2

Super 
Letter 3

C
od

ed
 

N
um

er
. 

N
um

er
. 

 
     a)    b) 

Fig 1. Coding simplifying by symbol division into coded and numerated parts  
а) Moffat’s approach  б) Ryabko’s approach 

  
   
 2. Recursive coding based on grouping of symbols 

 
 2.1 Basic idea 
 

Let’s divide original text into two streams: super-letter stre am and suffix index stream (one way 
of doing this see in B). The latter stream is saved to output data as it is. Super-letter stream is quite 
“heterogeneous” and it should be somehow compressed. In fact, super-letter stream is also the text 
that differs from original text by less alphabet size. The idea of the proposed coding techniques is 
the following. If the condition 

  
     2

SNN ≥ ,       (1) 
 

where N is the original alphabet size, SN  denotes super-letter alphabet size, is valid, then after pair-
wise uniting all data of super-letter stream into data with twice larger size, the obtained alphabet 
size is not larger than N. The text length due to grouping in pairs of neighbor data decreases twice. 
If this procedure is repeated recursively for new text with satisfying (1) at each step, then after each 
step the length of data remained non-coded decreases by two times. After few steps (≤ Llog 2 , 
where L is the original text size) all text will be coded. In Fig. 2 this idea is represented as block-
diagram. 
 Note that for RCGS the symbol probability table should not be stored in output data stream 
for static modeling as for AC. For decoding one has to know only the super-letters number and their 
content. RCGS with adaptive modeling is also possible, but as the basis for RCGS we consider just 
static modeling that ensures maximal speed of data encoding/decoding. 



Determination of 
symbol frequencies 

and super-letter 
forming 

Division of original 
text into suffix index 

stream and super-
letter index stream 

Original 
text 

Super-letter 
stream 

Suffix 
index 
stream 

Output data 
stream 

Pair-wise uniting the 
stream neighbor data 

Number of super-
letters and list of 
symbols included 

in each super-
letter 

New text of 
length L/2 

Recursive 
application of 

RCGS 

 
Fig.2. RCGS block diagram 

 
 2.2. Practical realization 
 
 While designing practical RCGS realization one has to   select N and the method of symbol 
grouping to super-letters. The alphabet with 162N =  suits only for adaptive modeling since the list 
of symbols grouped into super-letters is too large for storing in coded data although the algorithm of 
grouping [11] provides 253NS =  (under condition (1)) with appropriate additional code 
redundancy 2.6%.  
 For the alphabet with 82=N  the realization of RCGS with static modeling is possible. 
However, the grouping algorithm [11] produces required 16NS =  with possible additional code 
redundancy with approximately 23%. Obviously such additional redundancy is too large. 
 But the algorithm [11] assumes that we know only alphabet size. Below we describe an 
algorithm for symbol grouping into super-letters for known symbol probabilities as it is in static 
modeling.  
 While grouping alphabet symbols into super-letters, the code length of these symbols 
increases. This increase in normalized form can be expressed as 
 

   ∑
=

+−−=∆
M

1i
i2i2S2S )plogp(/)Mlogplog(p ,    (2) 

 
where M is the number of symbols grouped into super-letter, Sp  is their aggregate probability 

∑
=

M

1i
ip . 

 Let the symbols are grouped into super-letter if ∆  does not exceed some acceptable 
threshold ∆T . Then the grouping algorithm can be the following: 
1. Set ∆T , e.g. 01.0T =∆ ; 
2. Sort alphabet symbols in ascending order according to their probabilities; 
3. Consider in descending order all possible M equal to powers of 2 (for alphabet with 82N =  

these M=256, 128, 64, 32, 16, 8, 4, 2, and 1). For each M check ∆≤∆ T  (take the first M symbols 
from the sorted sequence). First time the condition becomes valid, group symbols into super-letter 



and remove them from further forming of super-letters; 
4. If there are symbols not yet grouped to super-letters, repeat step 3. 
 Time spent on super-letter forming for this algorithm does not depend on L and in most 
practical situation has small contribution into total coding time. We have not met practical 
situations when for 02.0T =∆  16NS ≤ . If this happens, one has to increase ∆T  a little and repeat 
super-letter forming. 
 
 2.3. Coding/decoding procedure aspects 
 
 In text coding after forming super-letter set, original text is divided into super-letter stream 
and suffix index stream. Due to use of static modeling, for each symbol the super-letter index, 
suffix index and suffix length in given super-letter are known. The bit number for super-letter index 
for 82N =  never exceeds 4, suffix index bit number can not be larger 8. Then it seems reasonable 
to create small tables with each symbol correspondence to super-letter index, suffix index and 
length. For symbol coding, the operations consist in taking super-letter and suffix indices from the 
table and their passing to the corresponding streams. This is very fast. 
 Then the super-letters are grouped in pairs in super-letter stream. This operation is 
performed as simple shift of the first grouped super-letter 1S  by 4 bits and logic «or» with the 
second super-letter 2S : 2S)4shl1S(Sr ∨=  with getting Sr  as their grouping result.  
 The algorithm is recursive, but due to decreasing the coded symbol number twice at each 
step the total number of coded symbols does not exceed 2L. Per each coded symbol of original text 
one needs, on the average, not more than two extractions from table and not more than one shift and 
one “or” operations. Two additions are needed for symbols probability calculation per each text 
letter.  
 Decoding is performed in inverse manner: grouped super-letter pairs are divided 
as 4shrSr1S = , 240Sr2S ∧= ; then for each super-letter the table of correspondence of suffix 
indices to original text symbols is formed using saved information on super-letter content. 
 
 3. Numerical simulations 
 
 RCGS basic advantages with respect to AC are higher coding speed with negligibly larger 
code redundancy. Besides, due to recursion of coding algorithm at each step of which symbol 
probabilities are taken into account, RCGS is able to effectively code symbols for very large 
alphabets.  
 These were the reasons to use as test data: the Calgary Text Compression Corpus files; 
sequences of integer valued variables with non-uniform distribution; and a text with very large 
alphabet (it was quantized DCT coefficients for 8x8 blocks of the images Lenna and Barbara). This 
corresponds to alphabet with 5122N =  (each symbol length is 64 bytes).  
 For comparisons we used RCGS ( 01.0T =∆ ), AC and HC. For correct comparison of 
coding speed data, static modeling for AC and HC was used. For estimation of additional 
redundancy of RCGS, the entropy of original text was calculated. The used program of AC was 
well speed optimized and written in Assembler. RCGS software is written in Delphi with middle 
optimization.  
 Table 1 gives sample results for some files and the averaged results for all files. Let us draw 
attention to the following. The AC code length exceeds text entropy by approximately 3%. This 
deals with errors of fast integer valued realization of AC and, in less degree, with static modeling 
use (output data include probability table). RCGS provides, on the average, even less code length 
than text entropy (by 1.3 %) due to algorithm recursion that partly takes into account probabilities 
of symbol pairs, four symbol groups, etc. RCGS has, at least, twice smaller encoding/decoding time 
than AC. And there are still resources for RCGS software optimization. 
 



Table 1. Results for Calgary Text Compression Corpus files 
Per symbol code 

length 
Encoding 
time, ms 

Decoding 
time, ms  

File 

Per 
symbol 
Entropy AC HC RCGS AC RCGS AC RCGS 

bib 5.201 5.312 5.429 5.184 23.96 11.83 24.99 11.72 
geo 5.646 5.688 6.617 4.713 24.13 10.67 24.93 10.57 

news 5.190 5.266 5.398 5.187 86.29 38.33 87.26 37.96 
paper3 4.665 4.833 4.844 4.725 11.93 5.21 12.23 5.16 

pic 1.210 1.311 4.178 0.968 60.96 37.27 62.28 36.90 
Average 4.891 5.042 5.407 4.826 36.80 17.89 38.05 17.72 

 
The case of random uncorrelated (quantized with quantization step QS) data coding (Table 2) is 

the most unfavorable for RCGS. But even in this case RGCS provides code-length only by 1.5-2% 
larger than entropy. The data in Table 3 outline RCGS ability to effectively code very large 
alphabet symbols. The code length for RCGS is 5-30% less than entropy. 

 
Table 2. Results for Gaussian Noise (quantized with QS=1, 256 Kb array) coding 

Per symbol code 
length 

Encoding 
time, ms 

Decoding 
time, ms 2σ  

Per 
symbol 
Entropy AC HC RCGS AC RCGS AC RCGS 

0.5 1.658 1.802 2.064 1.680 36.13 23.57 37.72 23.34 
25 4.370 4.475 4.420 4.443 59.56 27.20 62.99 26.94 
400 6.369 6.433 6.414 6.445 74.30 27.56 74.59 27.59 

 
Table 3. Results for quantized DCT coefficients coding (256 Kb array) 

Per symbol code 
length 

Encoding time, 
ms 

Decoding time, 
ms  

Picture 
 

QS 
Per symbol 

Entropy 
AC HC RCGS AC RCGS AC RCGS 

3 3.067 3.143 4.940 2.852 47.74 26.90 50.36 25.09 Lenna 
30 0.711 0.837 4.101 0.494 37.13 17.78 37.69 17.63 
3 3.497 3.560 5.019 3.260 48.58 26.45 49.80 26.19 Barbara 
30 1.042 1.166 4.140 0.803 35.71 19.32 37.41 19.13 

 
 4. Conclusion 
 
 This paper introduces a novel recursive coding technique applicable as fast, simple and 
effective alternative to AC. RCGS is applicable to 8 and less bit data, it is multiplication free. 
RCGS outperforms AC in coding/decoding speed by approximately twice and it often provides 
code length smaller than AC (up to 30%). In the worst cases the code lengths for RCGS are only 1-
3% larger than entropy.  
 
 References 
 
[1] J. Rissänen, "Generalized kraft inequality and arithmetic coding," IBM J. Res. Develop., vol. 

20, pp. 198-203, May 1976. 
[2] D. A. Huffman, "A method for the construction of minimum-redundancy codes," Proc. Inst. 

Radio Eng., vol. 40, no. 9, pp. 1098-1101, Sept. 1952. 



[3] T. Bell, I. H. Witten, and J. G. Cleary. Modeling for text compression. ACM Computing 
Surveys, 21(4), pp.557-591, Dec. 1989. 

[4] J. Rissänen and K.M. Mohiuddin, “A multiplication-free multialphabet arithmetic code”, IEEE 
Transactions on Communications, vol. 37, issue: 2 , pp. 93 – 98, Feb. 1989. 

[5] D. Chevion, E.D. Karnin and E. Walach, “High efficiency, multiplication free approximation of 
arithmetic coding”, Data Compression Conference, pp. 43-52, April 8-11, 1991. 

[6] D. W. Jones, Application of splay trees to data compression, Communications of the ACM, 
31:8, pp. 996-1007, 1988. 

[7] B. Ya. Ryabko, A fast sequential code. Soviet Math. Dokl., 39:3(1989), pp. 533-537. 
[8] U. Graf, “Dense coding - a fast alternative to arithmetic coding”, Proceedings of Compression 

and Complexity of Sequences, pp. 295-304, June 11-13, 1997. 
[9] M. Liddell and A. Moffat, “Hybrid Prefix Code for Practical Use”,  Procedeengs of Data 

Compression Conference, pp. 392-401, 2003. 
[10] B. Ryabko and J. Rissänen, ”Fast adaptive arithmetic code for large alphabet sources with 

asymmetrical distributions”, IEEE  Communications Letters, vol. 7, issue 1, pp. 33–35, Jan, 
2003. 

[11] B. Ryabko, J. Astola and K. Egiazarian, “Fast codes for large alphabets”, Communications 
in information and systems, vol. 3, no. 2, pp. 65-78, October, 2003. 

[12] B. Ryabko, G. Marchokov, K. Egiazarian, J. Astola, “The fast algorithm for the block codes 
and its application to image compression”, Proceedings of ICIP, vol. 2, pp.205-207, Sept. 14-17, 
2003. 

 


