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Abstract— In this paper, a new image database, 
TID2008, for evaluation of full-reference visual 
quality assessment metrics is described. It contains 
1700 test images (25 reference images, 17 types of 
distortions for each reference image, 4 different 
levels of each type of distortion). Mean Opinion 
Scores (MOS) for this database have been obtained 
as a result of more than 800 experiments. During 
these tests, observers from three countries (Finland, 
Italy, and Ukraine) have carried out about 256000 
individual human quality judgments. The obtained 
MOS can be used for effective testing of different 
visual quality metrics as well as for the design of 
new metrics. Using the designed image database, we 
have tested several known quality metrics. The 
designed test image database is freely available for 
downloading and utilization in scientific 
investigations. 
 

Index Terms—Visual quality metrics, HVS, image 
denoising, test image databases  

I. INTRODUCTION 
The quality evaluation of digital images is critical in 
many applications of image processing [1, 2]. In the 
current connected world, many users share and deliver 
multimedia data. The overall communication process 
includes manipulation, processing, storing, and 
transmission over (noisy) channels. Although there 
have been great improvements in compression and 
transmission techniques, each stage of processing may 
introduce perceivable distortions [3, 4]. For example, 
blocking, ringing, and blurriness are only few of the 
artifacts that a lossy compression algorithm introduces 
in an image. 

The visibility and annoyance of these impairments 
are related to the human perception of the quality of the 
received/processed data. To reduce these impairments it 
is important to quantify the quality degradations 
occurred during the processing chain, to maintain, to 
control, and possibly to enhance the quality of the 
digital data. To these aims it is crucial to have an 
effective image quality metric.  
 Availability of a quality metric adequate to Human 
Visual System (HVS) is strongly desirable for such 
applications like image and video lossy compression, 
quality control of printing and scanning devices, etc.

 In general, the quality evaluation should consider the 
particular application context [5]. For example, when 
the end user of the image-based system is a human 
being, the metric used for assessing the overall system 
effectiveness should take into account the impact of 
HVS. 

Many image quality metrics try to match the HVS 
[6-9]. All these metrics are in some sense heuristic. 
However, currently there are no reliable mathematical 
models for the HVS resulting in the impossibility of 
defining an optimum metric perfectly matching the 
HVS. Therefore, a challenging task is the evaluation of 
the correspondence of visual quality metrics with HVS 
using some methods of quantitative analysis. Usually 
this is performed using databases of test images for 
which the mean opinion scores (MOS) of image quality 
have been experimentally collected [10]. The 
methodology for database creation and experimental 
tests carrying out directly influences accuracy and 
reliability of quantitative analysis.  

This paper presents a new image database 
TID2008 which is currently up to authors’ knowledge 
the world largest according to the number of test images 
and types of distortions taken into account [11, 12]. We 
perform comparison of TID2008 and its closest analog, 
LIVE Database [10]. The results of verification of many 
image visual quality metrics using TID2008 are 
analyzed. 

The paper is organized as follows. Peculiarities of 
using visual quality metrics in digital image processing 
and requirements to test image databases that stem from 
these peculiarities are considered in Section II. Section 
III is devoted to the description of the image database 
we have created (the set of images, types of distortions, 
details of generating images with selected types and 
levels of distortions). In Section IV we present the 
performed experiments. Analysis of the obtained results 
is given in Section V. Section VI deals with analysis of 
known metrics efficiency with exploiting TID2008. 
Finally, Section VII describes how to get the database 
at user’s disposal, how to use it for user’s own 
purposes, etc.  



II. PECULIARITIES OF USING QUALITY METRICS IN 
DIGITAL IMAGE PROCESSING 

According to peculiarities of using visual quality 
metrics, all methods of digital image processing can be 
divided into two classes. The first class involves 
methods of image and video lossy compression for 
which such metrics can be exploited to control 
compression quality (Fig. 1). 
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Fig. 1. Block diagram of the process of efficiency 

verification for a given lossy compression technique 
 

In this case, a quality metric can be used both in the 
design of the compression block and in the overall 
performances evaluation. In the latter case, a metric 
value calculated for a decoded image can be used in the 
tuning phase of the parameters in the coarse-to-fine 
compression schemes. Then if, for example, an 
obtained value of quality metric is inappropriate, an 
image can be compressed with better quality with 
smaller quantization step or, equivalently, with larger 
bit rate. 

Although many existing models of HVS are able to 
consider such parameters as the distance of human eyes 
to a monitor, the monitor size, etc., it is often useful to 
have a quality metric independent from the knowledge 
of these parameters to mimic the common restitution 
environment. Since monitor characteristics and 
observer-monitor distance are highly varying 
parameters, in our test design we prefer to consider 
different situations by averaging several viewing 
conditions.  
 Another class of digital image processing techniques 
involves a variety of methods such as image filtering, 
reconstruction, inpainting, etc. For this class, image 
visual quality metrics are used only in the process of a 
method design and evaluation of its efficiency.   
 It is well known that practically it is impossible to 
define the optimum filtering technique due to the non-
stationary nature of processed 2D data. Therefore, 
statistical verification of efficiency has to be employed. 
Fig. 2 presents a block diagram of quantitative 
verification of efficiency evaluation for image filtering 
methods. 
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Fig. 2. Block diagram of the process of efficiency 
verification for a given method of image filtering 

 
 As a first step, a test image (or a set of test images) 
presenting good quality is selected. Then, according to 
the chosen model of noise or distortion, a noisy version 
of the image (images) is obtained and processed by a 
designed filter. The obtained output image is 
”compared” to the corresponding original image using 
considered quality metric. A value of the same metric is 
calculated for the noisy (distorted) image as well. By 
comparing the scores of these metrics it is possible to 
address the effectiveness of the designed filtering 
technique. 
 Requirements for quality metrics applied to the 
second class of digital image processing techniques are 
equivalent to those for image compression case. In this 
case as well we intend to evaluate the metrics for some 
averaged conditions of image visualization.  Note that 
metrics used in block diagrams in Figures 1 and 2 are 
full reference ones, i.e., they are calculated for pairs of a 
reference and the corresponding distorted images. 
 As can noticed from the few examples previously 
discussed, the availability of a good visual quality 
metric is needed to adequately assess efficiency of an 
image processing method or visual quality of 
compressed images. To understand the relation between 
the given metric and the HVS, the most reliable way is 
to exploit some specially created test image database.  
 Fig. 3 shows the use of an image database in testing 
visual quality metrics.  
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 The designed image database (Fig. 3, a) consists of a 
set of sample (reference) images, a corresponding set of 
distorted images and an array of MOS values obtained 
for each distorted image. When a metric is tested, its 
values are computed for each distorted image in a 
database and the obtained results are ”compared” to the 
corresponding MOS values. To avoid scaling problems 
the rank correlations are often used, e.g., Spearman and 
Kendall ones [13]. Larger values of rank correlations 
(the maximal value equals to unity) indicate better 
correspondence of a given metric to image quality 
assessment by humans. 
 Note that after preliminary fitting metric values and 
MOS, it is, in general, possible to apply the 
conventional Pearson correlation instead of rank 
correlation. Meanwhile, it is important to underline that 
the quality of fitting may reduce the accuracy of 
assessing a metric correspondence to HVS. 

 The image databases to be used for the chosen 
application should satisfy several requirements. The 
main constraint is that the test images should reflect the 
HVS peculiarities and contain non-trivial images for 
visual quality evaluation in order to effectively retrieve 
the advantages and the drawbacks of all tested quality 
metrics. Thus, it is possible to define the following 
requirements for the test image database: 

•  it should include images with considerably 
different characteristics: percentage of homogeneous 
regions, details and textures, various texture 
characteristics, etc.; 

•  for each HVS feature, the database has to 
contain, at least, one distortion type that allows to 
estimate how this feature influences image visual 

quality; 
•      it is desirable that the database will contain image 

distortions typical for practice that originate due to 
compression, denoising, data transmission errors, etc; 

•  the images in the database should be challenging  
for visual quality estimation, however 1) the number of 
distortion levels should not be large, 2) the number of 
situations when all metrics evidence in favor of a given 
image should not be large. 

 Furthermore, it has been stated above that tested 
metrics are to be oriented on some average conditions 
(parameters) of image visualization. Then, experiments 
intended on obtaining observers’ opinions (MOS 
values) in creating and exploiting test image databases 
have to be carried out with reasonable variation of 
image visualization conditions.  

Note that under this assumption an image database 
can not be used for a design and verification of HVS 
models since creation (design) of HVS models requires 
strict control of visualization and observation 
conditions (parameters). However, if images are 
visualized and analyzed in slightly varying conditions, 
this, to our opinion, provides the best verification of 
quality metrics if they are intended for visual quality 
assessment in a priori unknown and variable conditions 
of visualization and observation. 

III. DESCRIPTION OF THE PROPOSED IMAGE 
DATABASE 

The quality of any image database strictly depends on 
the reference images that are used. The main strategy is 
to select the images that represent a wide variety of 
scenes. That is, the images in the database should 
present different textural characteristics, various 
percentage of homogeneous regions, edges, and details. 
In this sense, the Kodak test set [14] can be considered 
as a good trade off between the abovementioned 
requirements. This set is the basis of the LIVE database 
[10] and we have also used it. Recall that the Kodak test 
set contains 24 images (see Fig. 4).  

Besides, we have synthesized and added to TID2008 
one artificial image (Fig. 4) that has different texture 
fragments and objects with various characteristics. The 
motivation of including this image into TID2008 was to 
provide adequate testing for metrics intended to work 
with such kind of images.  

 



     

     

     

     

     
FIG. 4. REFERENCE IMAGES (1-24) OF OUR DATABASE FORMED USING THE KODAK TEST SET AND THE 25-TH 

REFERENCE IMAGE SYNTHESIZED BY US (EACH 512X384 PIXELS, 24 BIT PER PIXEL)  
 

TABLE I. TYPES OF DISTORTIONS USED IN OUR IMAGE DATABASE 

№ Type of distortion  
(four levels for each distortion) 

Correspondence to practical 
situation Accounted HVS peculiarities 

1 Additive Gaussian noise Image acquisition Adaptivity, robustness 

2 
Additive noise in color components is 
more intensive than additive noise in the 
luminance component 

Image acquisition Color sensitivity 

3 Spatially correlated noise Digital photography Spatial frequency sensitivity 
4 Masked noise Image compression, watermarking Local contrast sensitivity 
5 High frequency noise Image compression, watermarking Spatial frequency sensitivity 
6 Impulse noise Image acquisition Robustness 

7 Quantization noise Image registration, gamma 
correction  Color, local contrast, spatial frequency 

8 Gaussian blur Image registration Spatial frequency sensitivity 
9 Image denoising Image denoising Spatial frequency, local contrast 

10 JPEG compression JPEG compression Color, spatial frequency sensitivity 
11 JPEG2000 compression JPEG2000 compression Spatial frequency sensitivity 
12 JPEG transmission errors Data transmission Eccentricity 
13 JPEG2000 transmission errors Data transmission Eccentricity 
14 Non eccentricity pattern noise Image compression, watermarking Eccentricity 

15 Local block-wise distortions of different 
intensity Inpainting, image acquisition Evenness of distortions 

16 Mean shift (intensity shift) Image acquisition Light level sensitivity 

17 Contrast change Image acquisition, gamma 
correction Light level, local contrast sensitivity 

 



 All images in our database are of size 512x384 
pixels. This choice has been suggested by unification 
purpose (images in the Kodak test set have non-equal 
sizes) and for a convenience of carrying out subjective 
experiments (see Section IV). All images of fixed size 
have been obtained by cropping selected fragments 
from the original images of the Kodak test set without 
any scaling and/or rotation operations.   

Table I presents the distortions modeled in our image 
database. Additive zero-mean noise is often present in 
images [2] and it is commonly modeled as a white 
Gaussian noise. This type of distortion is included in 
most of studies of quality metric effectiveness. This 
type of distortion is, probably, one of few cases when 
metrics MSE and PSNR present a good match with the 
HVS. 

The distortion type 2 (noise is non-uniformly 
distributed between color components modeled in the 
color space YCbCR [15]) has been added to test the 
quality metric correspondence to known property of 
HVS to not equally perceive distortions in brightness 
(luminance) and color (chrominance) components.  

Quite often additive noise cannot be considered as 
spatially uncorrelated (white noise). Thus, consideration 
of spatially correlated noise allows, first, to check 
metrics’ correspondence to inherent spatial frequency 
sensitivity of HVS. Second, such kind of noise is 
present in the important class of color images created 
by modern digital cameras [16]. Recall that an image 
taken from a digital camera matrix is mosaic [17]. Such 
images are corrupted by noise with rather complicated 
statistical properties [18] but originally noise is 
practically spatially independent. However, in the 
process of image converting from original mosaic to 
further used raster form data are subject to nonlinear 
interpolation and noise becomes spatially correlated. 
Noise removal and image compression for this 
application are quite complex tasks [16], [19], [20]. 
Currently a great interest is observed in the design of 
effective methods to solve aforementioned tasks and it 
is important to adequately evaluate image visual quality 
before and after processing.  

Low-pass spatially correlated noise is not the only 
case of additive noise that is not white. Masked noise 
and high frequency noises are other types of distortions 
that allow analyzing metrics’ adequateness with respect 
to local contrast sensitivity and spatial frequency 
sensitivity of HVS.  Such types of distortions are 
typical for a wide class of practical tasks like lossy 
image compression and, especially, digital 
watermarking [21], [22]. As it was demonstrated by 
some studies [7], many known quality metrics, 
unfortunately, do not take these peculiarities of HVS 

into account well enough. 
Impulse noise (we have used a typically used model 

of uniformly distributed impulse noise [23]) arises, in 
particular, due to coding/decoding errors in data 
transmission. 

The task of its removal is of great interest during the 
last three decades [24]. Thus, to our opinion, the 
presence of images affected by impulse noise in the 
database is necessary. This might assist to adequately 
evaluate effectiveness of methods for impulse noise 
removal, image inpainting [25], etc. Besides, the use of 
such images might help in assessing how the tested 
metrics account for such property of HVS as robustness 
to impulses. It has been proven that for small 
probabilities of impulse noise humans are able to quite 
easily intuitively recover the values for pixels corrupted 
by spikes using neighbor pixels.  
 Quantization noise has not received too much 
attention in image visual quality evaluation, although 
this distortion is quite often met in practice and it 
allows to estimate quality of the metrics’ adequacy with 
respect to several peculiarities of HVS. Quantization 
noise characterized by the same PSNR can be almost 
not be noticed in highly textured images (Fig. 5 (a)) 
while being very noticeable in images with few textured 
areas (Fig. 5 (b)). Most of known metrics do not 
adequately assess visual quality of images subject to the 
considered type of distortion. 
 Gaussian blur is also considered in the proposed 
database since it is an important type of distortions 
often met in practical applications and frequently 
included in studies dealing with visual quality metrics 
[10]. 

 Other important type of distortions studied recently 
[24] are residual distortions resulted after applying 
different denoising procedures (filters). Image filtering 
constitutes a class of practical tasks for which it is 
necessary to have an appropriate tools to evaluate visual 
quality of filtered image. 
  Unfortunately, it often happens that a filtered image 
presents a higher PSNR value (2-3 dB higher) than the 
original one, but, at the same time, a processed image 
looks perceptually worse than the corresponding noisy 
original. Thus, we have included into our database 
images for which original additive i.i.d. Gaussian noise 
is suppressed by one of the best state-of-the-art filter 
[26] based on 3D Discrete Cosine Transform (DCT). 



a) a) a) 

b) 
Fig. 5. Two test images distorted by 
quantization noise: a) the highly 
textured image, PSNR=24.35 dB, b) 
the image containing much less 
texture, PSNR=24.21 dB 
 

b) 
Fig. 6. Comparison of visual quality 
a) after filtering out additive noise, 
PSNR=28.19 dB, b) original noisy 
image corrupted by additive i.i.d. 
Gaussian noise, PSNR=26.99 dB 

b) 
Fig. 7. Image decoded with errors 
due to unreliable data transmission 
line: a) for the standard JPEG, 
PSNR=24.05 dB, b) for the standard 
JPEG2000, PSNR=23.98 dB 

a) a) a) 

      
b)                            c) 

Fig. 8. An example of non-
eccentricity distortions: a) distorted 
image, PSNR=27.0 dB, b) enlarged 
fragments of the reference image, c) 
the same fragment with introduced 
distortions (the corresponding places 

b) 
Fig. 9. An example of block-wise 
distortions of different intensity: a) 
16 blocks, PSNR=26.49 dB, b) 2 
blocks, PSNR=25.90 dB 

b) 
Fig. 10. An example of contrast 
change: a) to larger contrast, b) to 
smaller contrast 



are marked by white circles) 
 
 According to [26], this filtering approach has 
produced the best visual quality of filtered images 
among several considered effective filters.  

Fig. 6 gives an example of the processed image that 
can be compared to original image corrupted by 
Gaussian additive noise. As it can be seen, although the 
processed image is characterized by a larger PSNR, 
residual noise after filtering and distortions that are 
inevitably introduced by any filter lead to sufficient 
visual artifacts. 
 Similarly to LIVE database, images distorted with 
lossy compression (JPEG and JPEG2000) have been 
included into our database. The tasks of evaluating 
distortions for lossy image compression techniques are 
of great interest. Besides, we have included into our 
database the images compressed by JPEG or JPEG2000 
and decoded with errors in data transmission channels. 
Decoding errors have been modeled in such a way that 
required PSNR has been provided for decoded images. 
Quite often distortions induced by such errors are 
almost invisible thanks to their non-eccentricity. Fig 7 
presents two examples of distortions due to 
transmission/decoding errors. Distorted fragments 
might occur to be similar to original texture and/or 
color of surrounding fragments and due to peculiarities 
of HVS a human might not notice such distortions. To 
our opinion, the use of images for which the considered 
distortions are modeled allows to predict the ability of 
the tested quality metrics to include this HVS feature 
into account. 

HVS usually is not sensitive to non-eccentricity 
distortions: by considering this behavior in applications 
like lossy image and video compression might lead to 
considerable quality improvement of compressed 
images with the same compression ratio. Therefore, we 
have decided to include into the database the images 
distorted by a specific type of artifacts modeled by us 
and called “non eccentricity pattern noise”. Such 
distortions have been modeled in the following way. A 
small image fragment of size 15x15 pixels has been 
randomly taken in a reference image and it has been 
copied instead of other fragment located nearby (at 
distance of few pixels). This operation has been 
repeated several times until a required PSNR is 
approximately provided. Note that without having the 
corresponding reference image, by analyzing the image 
in Fig. 8,a it is even difficult to localize the distortion.   

For instance, if an image is corrupted by impulse 
noise, a human being can easily detect the 
corresponding pixels. But in the considered case it is 
frequently difficult to identify compact distortions of 
rather large size of 15x15 pixels. This demonstrates the 
property of HVS to discard non-eccentricity distortions. 

 Another specific type of distortions modeled by us 
and added to TID2008 are the so called local block-
wise distortions of different intensity. We suppose that 
in case of compact impulse-like distortions, HVS does 
not react to distortion on single pixel but mainly to an  
area (percentage of pixels) that is a subject to 
distortions. Distortions have been modeled in such a 
way that blocks of size 32x32 pixels having arbitrary 
random color are randomly placed in important areas of 
an image. 
 For the first level of distortions, 16 blocks having  
color slightly different from the mean color of replaced 
fragment have been added (see Fig. 9,a). For the second 
level of distortions, the amount of such blocks was 8 
but their color differs more from mean color of replaced 
fragment. For the third and fourth levels, four and two 
blocks have been replaced, respectively. However, for 
these blocks their color differs even more essentially 
from the mean colors of the corresponding replaced 
fragments (Fig. 9,b). Color and intensity differences 
have been adjusted in such a manner that irrespective to 
the number of blocks approximately the same PSNR 
has been provided. Example in Fig. 8 shows that the 
image corrupted by two blocks is perceived as having 
better visual quality (although it has smaller PSNR) 
than the image distorted by 16 blocks. This has been 
confirmed by experiments (see Section IV). Most 
probably, such assessment (decision) is explained by 
HVS inability to “retrieve” lost information in places 
distorted by blocks irrespective to their color. Then it 
seems that from image perception point of view it is 
better if total area of such block-wise distortions is 
smaller whilst a degree of such distortions is of less 
importance. 

Finally, we have added into our database images for 
which mean shift and contrast change distortions have 
been modeled. Importance of these distortions has been 
demonstrated in [10]. Mean value shifting and contrast 
changing have been done with respect to images as a 
whole. For each distortion of mean and contrast two 
changes to smaller and two changes to larger values 
have been simulated (see images in Fig. 10). 

As it was mentioned above, we have set four levels 
for all types of distortions. For almost all types of 
distortions, the corresponding levels of PSNR are about 
30 dB, 27 dB, 24 dB, and 21 dB (very good quality, 
good quality, poor quality, and bad quality). On one 
hand, such number of distortion levels for 25 reference 
images allows to take into account all range of 
subjective quality of distorted images from “excellent” 
to “very bad”. On the other hand, four levels do not 
create too many simple combinations of image pairs at 



their quality comparison stage (see Section II).  
 It is possible to assert that in the presented database, 

to simulate some types of distortions we have exploited 
either some very particular or some quite simple models 
of distortions. For example, this relates to impulse noise 
for which different models exist [23] or for blur that can 
be characterized by point spread functions with a wide 
range of parameters [19]. In this sense, our intention 
was, on one hand, to model more types of possible 
distortions than in other databases of distorted images. 
On the other hand, we used quite typical and simple 
models that allowed obtaining distorted images in an 
easy way..  

IV. EXPERIMENTS DESCRIPTION 
 In the performed experiments, a large group of 
observers (volunteers) have been evaluating visual 
quality of distorted images in the database. As a result, 
MOS values have been obtained. 
 There are different methodologies that can be used 
to evaluate the quality of an image [7, 10, 27]. 
Depending on a chosen strategy, the observers have 
been asked to evaluate the absolute quality of an image 
or its similarity to a reference. In both cases the subject 
evaluation is expressed with a grading scale that can be 
continuous or discrete, categorical or numerical (see 
Fig. 11). 
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Fig. 11. Examples of possible grading scales 

 
 For example, in [10] five gradations have been used 
and they have been described through the five 
categories: “Bad”, “Poor”, “Fair”, “Good” and 
“Excellent” (or, equivalently, with a score from 1 to 5). 
However, it is often difficult for an observer to assign 
scores to the distorted images. This has been stated by 
many persons participated in experiments carried out 
according to this methodology. In fact in many cases, 
an observer has evaluated quality of a distorted image 
“A” as “Bad”, but later he/she has to evaluate quality of 
another distorted image “B” that is even worse. But 
there is no gradation worse than “Bad” in the used 
scale. This leads to insecurity of the observer and in the 
willingness to change the previously given grade. The 
grade change is often not permitted by common 
assessment systems. To simplify the evaluation 
procedure, the observers undergo a training phase in 
which they can see some examples of the distortions 

that are present in the test set; this helps in getting an 
idea of what is “Bad” or “Excellent” quality [28].  
 When designing MOS for TID2008, we have used 
another methodology for carrying out the subjective 
tests. At monitor, the reference image (in the lower 
part) and a pair of distorted images (in the upper part) 
are simultaneously presented (see an example in Fig. 
12). 
  

 
Fig 12. Screen-shot of the software used in experiments 
 
 Each observer was asked to select a distorted image 
(between two ones) that differs less from the reference 
one. After the first selection, two different (new) 
distorted images appear in the upper part of screen. 
 Such approach (methodology of comparisons) has 
been proven to be less annoying for experiment 
participants although, according to opinions of some 
researchers [29], it produces less accurate estimates of 
MOS. For TID2008, we have derived estimates of MOS 
accuracy for the considered approach and compared 
them to accuracy of MOS estimation produced by 
conventional MOS derivation for estimation of 
observers’ quality. These estimates are presented in 
Figures 13 and 14.  
 Let us describe the process how experiments have 
been performed to obtain the MOS. Each observer in 
one experiment has carried out distorted image quality 
assessment for only one reference image (68 distorted 
images). Average time for one experiment takes about 
13.5 minutes. Such approach (short-time experiments) 
was used in order to reduce the load for each participant 
to the experiment. According to recommendations 
given in [27], the time of accomplishing one experiment 
by each observer should not exceed 30 minutes.  
 However, the approach followed in [10], when each 
experiment was carried out separately for each type of 
distortion (with the same purpose to decrease the time 
of experiment) may lead to over-learning to a given 
type of distortion. 
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Fig. 13. MOS for TID2008 images 
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Fig. 14. MOS averaged for all reference images 

 
 Totally, more than 800 observers of different 
cultural level (students, tutors, researchers) from three 
countries (Finland, Italy, Ukraine) have participated to 
the experiments. More than 200 observers have carried 
out experiments remotely, via Internet. Other observers 
have performed experiments in classes, under control 
and supervision of tutors. Each observer (including 
those involved remotely) was preliminarily instructed 
and trained on a set of distorted images before carrying 
out the actual experiments. 
 According to requirements presented in Section II, 
visualization and observation conditions varied in 
reasonable limits to be comfortable for each participant. 
Different monitors were used, both LCD and CRT, 
mainly 19” with the preset resolution 1152x864 pixels.   
 Each observer in one experiment has been asked to 
select an image with better quality between two for 306 
times. Because it is practically impossible to carry out 
pair-wise comparisons of each of the 68 distorted 
images to another distorted image, we exploited Swiss 
competition principle (used in chess tournaments). At 
the first step, 68 images were divided into 34 random 
pairs and were shown to an observer. An image pointed 
as a «winner» got one point. At the next steps, only 
representatives of the same point groups were used for 
comparison, making totally, 9 tours (34 x 9 = 306). 
Therefore, each image could get from 0 to 9 points as a 
result of experimental tests. These amounts of points 

represent quantitative evaluation of image quality 
obtained from a given observer. 
 Evaluations of image quality provided by different 
observers might have abnormal evaluations (e.g., due to 
wrong clicks, or to low attention level in some 
observer). The validity of the subjective test results was 
verified by a screening of the results performed 
according to Annex 2 of ITU-R Rec. BT.500 [27]. We 
used the same methodology as in [10]. About 2% of 
abnormal evaluations (outliers) have been removed and 
14 abnormal experiments out of 838 (about 1.7%) have 
been neglected.   
 For each reference image, about 33 evaluations of 
distorted image visual quality have been done using a 
scale from 0 to 9 with the mean close to the true value 
of MOS and variance about σ2=0.63 (relative variance 
is about 0.031). The final values of MOS for each 
image have been obtained by averaging all quality 
evaluations for a given image. Thus, most of MOS 
values obtained by exploiting TID2008 are 
characterized by Gaussian errors and they correspond to 
an ideal quality metric that corresponds to HVS with σ2 
approximately equal to 0.02 (0.63/33). For the 
considered scale 0..9 this is quite small variance and 
this evidences in favor of high accuracy of the obtained 
MOS estimates. 

In order to compare our results with the 
conventional quantitative evaluation of image visual 



quality [10] we have carried out a separate experiment. 
60 observers have evaluated the quality of distorted 
images giving a grade in a scale from 1 to 5. The 
experiment has been done only for the first reference 
image. 2% of outliers have been removed and 10% of 
abnormal experiments have been rejected. Variance of 
the obtained MOS estimates for the scale from 1 to 5 
was 0.4 (for the scale 1..100 this is equivalent to σ2 = 
250). Relative variance (the ratio of variance to squared 
mean) for this approach is 0.083. This is almost three 
times larger than for the approach used by us in earlier 
experiments by exploiting TID2008. Thus, the 
methodology we have used to perform the experimental 
tests shows better accuracy. Also note that Spearman 
correlation for MOS obtained for the first original 
image family (68 distorted images) for both 
methodologies of the experiment is equal to 0.97. This 
correlation factor is very high and it demonstrates that 
both methodologies lead to similar results. This shows 
that both methodologies can be used and they differ 
only by convenience for observers and by the provided 
accuracy of MOS estimation.   
 One more indirect evidence in favor of the used 
methodology in the way the experiments have been 
performed in TID2008 is the high correlation value 
between the data obtained for observers from different 
countries (see Table II). 

 
TABLE II. CORRELATION BETWEEN MOS FOR GROUPS OF 

OBSERVERS IN THREE PARTICIPATING COUNTRIES 

Countries Spearman 
correlation 

Finland (251 observers) - Italy (150 
observers) 0.93 

Finland (251 observers) - Ukraine (437 
observers) 0.96 

Italy (150 observers) - Ukraine (437 
observers) 0.93 

 
 Note that more than 200 observers in Finland have 
carried out experiments via Internet. Being a distance- 
based methodology, this could have lead to larger 
number of outliers. However, high correlation for the 
results obtained in Finland with the results in Italy and 
Ukraine (where experiments have been performed in 
class-room) show confidence in the overall scores.  
 Fig. 13 presents MOS for all 1700 test images in 
TID2008 and Fig. 14 shows averaged MOS  for each 
type and level of distortions.  

 
V. COMPARISON OF TID2008 AND LIVE DATABASES 

  
At the moment, TID2008 is the largest database of 
distorted images intended for verification of full-
reference quality metrics. Table III presents the main 
parameters and characteristics allowing the comparison 
of TID2008 to its nearest analog LIVE Database [10]. 

  

TABLE III. COMPARISON CHARACTERISTICS OF LIVE 
DATABASE AND TID2008 DATABASE 

Test image database 
N Main characteristics LIVE 

Database TID2008 

1 Number of distorted 
images 779 1700 

2 Number of different 
types of distortions 5 17 

3 
Number of 

experiments carried 
out 

161 
(all USA) 

Totally 838 
(437 - Ukraine,  
251 - Finland,  

150 - Italy) 

4 
Methodology of 

visual quality 
evaluation 

Evaluation 
using five 
level scale 
(Excellent, 
Good, Fair, 
Poor, Bad)  

Pair-wise sorting 
(choosing the 

best that visually 
differs less from 
original between 
two considered) 

5 

Number of 
elementary 

evaluations of image 
visual quality in 

experiments 

25000 256428 

6 Scale of obtained 
estimates of MOS  

0..100 
(stretched 
from the 

scale 1..5) 

0..9 

7 Variance of 
estimates of MOS 250* 0.63 

8 Normalized variance 
of estimates of MOS 0.083* 0.031 

 
 Estimates marked by “*” in Table III, are obtained 
as the result of experiments described in the previous 
Section.  
 The main advantage of TID2008 with respect to 
LIVE Database is that TID2008 accounts for 17 
different types of distortions and, thus, covers more 
practical applications and known peculiarities of human 
visual system (HVS). LIVE Database deals with only 
five types of distortions for which most known metrics 
tested using LIVE Database commonly have quite good 
correspondence to HVS. In turn, TID2008 allows 
carrying out more detailed analysis of quality metrics 
indicating their drawbacks and demonstrating 
prospective ways of further investigations and design.   
 Besides, the MOS values for TID2008 are more 
accurate than for LIVE Database. For comparable 
number of visual quality evaluations for each image, 
relative variance for TID2008 is almost three times 
smaller than for LIVE Database. 

 
VI. COMPARATIVE ANALYSIS OF QUALITY METRICS 

 
 Quality metric verification using TID2008 can be 
done using all MOS as well as for particular subsets of 
TID2008. A subset may include one or several types of 
distortions. Table IV shows subsets used below for 



verification of quality metrics (distortions that belong to 
a given subset are marked by +). 
 
TABLE IV. DISTORTION TYPES AND CONSIDERED SUBSETS OF 

TID2008 

№ Type of distortion  

N
oi

se
 

JP
EG

 
Ex

ot
ic

 
A

ct
ua

l 
Fu

ll 

1 Additive Gaussian noise + - - + +

2 Different additive noise in color 
components  - - - - +

3 Spatially correlated noise + - - + +
4 Masked noise - - - - +
5 High frequency noise + - - - +
6 Impulse noise + - + + +
7 Quantization noise + - - + +
8 Gaussian blur + - - + +
9 Image denoising + - - + +

10 JPEG compression - + - + +
11 JPEG2000 compression - + - + +
12 JPEG transmission errors - - - - +
13 JPEG2000 transmission errors - - - - +
14 Non eccentricity pattern noise - - + - +

15 Local block-wise distortions of 
different intensity - - + - +

16 Mean shift (intensity shift) - - - - +
17 Contrast change - - - - +

 
 We have evaluated correspondence of HVS to the 
following 18 metrics (quality indices): MSSIM [8, 30], 
VIF [31, 30], a pixel based version of VIF (VIFP) [31, 
30], VSNR [9, 30], PSNR-HVS (PSNRHVS) [28], 
PSNR-HVS-M (PSNRHVSM) [7], SSIM [6], NQM 
[32, 30], UQI [33], XYZ [34], LINLAB [35], IFC [36, 
30], WSNR [37, 30],  DCTUNE [38], SNR [30], MSE 
[30], PSNR [30] and PSNR calculated for only 
brightness (intensity) component of color images 
(PSNRY). Table V presents the values of Spearman 
correlation for the considered 18 metrics and the 
subsets used in TID2008. Similarly, Table VI contains 
the corresponding values of Kendall correlation factors. 
The first row of both Tables presents correlations 
between obtained MOS and “ideal” MOS that could be 
provided if the number of experiments approaches to 
infinity.  
 Here we would like to emphasize that most metrics 
analyzed in this paper are oriented on application  for 
grayscale images. Thus, they have been calculated with 
respect to intensity images of color images used in 
TID2008. Meanwhile, TID2008 contains three types of 
distortions (namely, numbers 2, 10, and 12) that are not 
uniformly distributed between color (RGB) 
components. Thus, TID2008 can be used to verify both 
types of metrics, those that take and those that not take 
into consideration color information. Three best metrics 
producing the greatest correlations for each subset are 
marked in bold in Tables V and VI. 
 

TABLE V. SPEARMAN CORRELATIONS FOR THE CONSIDERED 
METRICS 

№ Metric Noise JPEG Exotic Actual Full 
- Ideal metric 

(HVS) 
0.991 0.996 0.985 0.994 0.994 

1 MSSIM 0.813 0.957 0.673 0.868 0.853 
2 SSIM 0.856 0.964 0.468 0.882 0.808 
3 VIF 0.820 0.956 0.045 0.841 0.750 
4 VSNR 0.857 0.930 0.490 0.869 0.705 
5 VIFP 0.734 0.949 0.033 0.821 0.655 
6 NQM 0.865 0.932 0.517 0.874 0.624 
7 UQI 0.526 0.860 0.156 0.677 0.600 
8 PSNRHVS 0.917 0.966 0.541 0.920 0.594 
9 XYZ 0.848 0.815 0.679 0.829 0.577 

10 IFC 0.663 0.898 -0.075 0.732 0.569 
11 PSNRHVSM 0.918 0.971 0.518 0.929 0.559 
12 PSNRY 0.752 0.866 0.630 0.810 0.553 
13 SNR 0.712 0.805 0.561 0.760 0.523 
14 MSE 0.704 0.877 0.671 0.794 0.525 
15 PSNR 0.704 0.877 0.671 0.794 0.525 
16 WSNR 0.897 0.949 0.544 0.900 0.488 
17 LINLAB 0.839 0.906 0.604 0.847 0.487 
18 DCTUNE 0.864 0.933 0.556 0.860 0.476 

 
TABLE VI. KENDALL CORRELATIONS FOR THE CONSIDERED 

METRICS 
№  Noise JPEG Exotic Actual Full 
- HVS 0.921 0.947 0.902 0.933 0.935 
1 MSSIM 0.609 0.818 0.478 0.675 0.654 
2 SSIM 0.658 0.828 0.311 0.691 0.605 
3 VIF 0.634 0.814 0.092 0.657 0.586 
4 VSNR 0.665 0.764 0.372 0.677 0.534 
5 VIFP 0.536 0.806 0.082 0.631 0.495 
6 PSNRHVS 0.751 0.837 0.385 0.750 0.476 
7 NQM 0.673 0.766 0.349 0.678 0.461 
8 PSNRHVSM 0.752 0.847 0.364 0.765 0.449 
9 UQI 0.363 0.666 0.115 0.489 0.435 

10 XYZ 0.654 0.633 0.480 0.638 0.434 
11 IFC 0.477 0.714 0.004 0.542 0.426 
12 PSNRY 0.549 0.670 0.452 0.609 0.402 
13 WSNR 0.714 0.797 0.379 0.715 0.393 
14 LINLAB 0.652 0.758 0.422 0.665 0.381 
15 SNR 0.512 0.604 0.396 0.558 0.374 
16 DCTUNE 0.683 0.791 0.379 0.676 0.372 
17 MSE 0.501 0.692 0.488 0.593 0.369 
18 PSNR 0.501 0.692 0.488 0.593 0.369 

 
 We would like to draw readers’ attention to the fact 
that Spearman correlation values for the metrics PSNR 
and MSE are equal. If the conventional Pearson 
correlation is used, then, without fitting, the correlation 
factor for these metrics might be not equal to unity 
although they are strictly connected. Then, for 
increasing correlation of metrics their fitting is needed 
[10]. Because of this, it is preferable to employ rank 
correlation that avoids necessity of fitting in the 
considered analysis. This is also important because a 
quality of fitting commonly influences accuracy of 
obtained results. 
 The data presented in Tables V and VI for the whole 
image database TID2008 (the set marked as “Full”) 
show that the widely used metrics PSNR and MSE have 
very low correlation with human perception (correlation 
factors are about 0.5). Even the best among considered 



metric MSSIM has correlation with HVS of the order 
0.85 whilst it is desirable to provide a Spearman 
correlation value around 0.99.  
 For the subset “JPEG”, the best Spearman 
correlation (SC) between MOS and analyzed metrics is 
provided by our metrics PSNR-HVS and PSNR-HVS-
M [7] (SC is about 0.97), slightly smaller SCs are 
observed for the metrics MSSIM and VIF (about 0.96). 
Applicability of these metrics for lossy image 
compression has been also recently pointed out in [39].  
 For the subset “Noise”, the largest values of both 
Spearman and Kendall correlations (about 0.92 and 
0.75, respectively) have been observed for the metrics 
PSNR-HVS and PSNR-HVS-M as well. The metric 
Weighted SNR (WSNR) performs for this set rather 
well (SC is about 0.90 and Kendall correlation equals to 
0.71). 
 For  “Exotic” subset (that, in fact, includes different 
versions of impulsive distortions) even the best metric 
MSSIM exhibits low values of SC and KC which are 
the smallest between the considered subsets MOS 
(SC=0.679, KC=0.488). Surprisingly, just for this 
subset the metrics MSE and PSNR perform better than 
other metrics (according to Kendall correlation). This 
indirectly shows that till now practically no attention in 
metric design and analysis has been paid to consider 
distortions collected in the subset “Exotic”.   
 For the subset “Actual” that collects the most widely 
met types of distortions in the area of color image 
processing, the first two places are occupied by our 
metrics PSNR-HVS and PSNR-HVS-M. Their 
correlations with MOS are not ideal but they are, at 
least, larger than for other metrics. This allows 
recommending them for evaluating efficiency of image 
filtering and lossy compression. Matlab code for the 
metric PSNR-HVS-M is available from [40]. 

VII. ACCESS TO TID2008, CONCLUSIONS AND 
ACKNOWLEDGEMENTS 

The archive TID2008 is available for downloading 
from [41]. This archive includes image files, the file 
containing the MOS values, the program for calculation 
of Spearman and Kendall correlations, the readme file 
where it is explained how to exploit the database. Also, 
archive contains the values of most known quality 
metrics calculated for TID2008. TID2008 occupies 
about 1 GB on a hard disk and about 600 MB in the 
archive. 

We plan to regularly update the versions of this 
database. In particular, updated versions will provide 
more reliable data (in statistical sense) due to taking 
into account the results of future experiments. 
Moreover, new versions will include new types of 
distortion that take place in different applications of 
image processing and/or those distortions that might 
correspond to new peculiarities of HVS found in future 

experiments. 
Finally, we would like to stress again to the following 

advantages of TID2008. First, it satisfies main 
requirements to such databases and contains many 
different types of distortion that relate to various 
peculiarities of HVS. This is important since for any 
quality measure when it is desirable to check its 
correspondence to more features of HVS. Currently it is 
not clear in which situations and applications of image 
processing that might appear in future a metric will be 
used and what features of HVS will be of a major value. 
Note that our database allows determining drawbacks of 
metrics. If all metrics would produce good results for a 
given database, it could be due to the database too 
simple. Note, that our database TID2008 has 
demonstrated serious drawbacks of known quality 
metrics.  
 The authors would like to thank all the people in 
Finland, Ukraine, and Italy who assisted in the 
experiments performance. Special thanks go to Dr. 
Heikki Huttunen (Tampere, Finland) and Mikhail 
Zriakhov (Kharkov, Ukraine).  
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