
ADCTC: ADVANCED DCT-BASED IMAGE CODER

Nikolay Ponomarenko1, Vladimir Lukin1,
Karen Egiazarian2 and Jaakko Astola2

1Department of Transmitters, Receivers and Signal Processing, National Aerospace University,
Chkalova Str. 17, 61070, Kharkov, Ukraine, Telephone/Fax: +38 (057) 3151186,

E-mails: uagames@mail.ru, lukin@xai.kharkov.ua
2Tampere University of Technology, Signal Processing Department, P. O. Box 553, FIN-33101,
Tampere, Finland, Telephone: +358 3 3115 2923, +358 3 3115 3860, Fax: +358 3 3115 3087,

E-mails: karen@cs.tut.fi, jta@cs.tut.fi

ABSTRACT

An Advanced DCT based image Coder (ADCTC) is
proposed in this paper. It uses partition schemes, i.e.
variable size DCT transforms of image blocks, coding of
numbers of significant bits (NOSB), context modeling
and coding of signs of DCT coefficients. Advantages of
ADCTC in comparison to other recently proposed DCT
and wavelet based coders including standards JPEG and
JPEG2000 are demonstrated.

1. INTRODUCTION

Discrete cosine transform (DCT) [1] together with
lapped transforms (LT) [2] and discrete wavelet
transforms (DWT) [3] are widely used in many image
coders, such as JPEG [4], SPIHT [5], EBCOT [6],
JPEG2000 [7], etc.
 In [8], authors presented a DCT-based image coder
AGU-MHV utilizing modified horizontal-vertical
partition scheme (that adaptively divides an image into
non-equal size blocks), variable size DCT transforms
and sophisticated bit-plane coding of DCT coefficients.
This coder demonstrates superior performance

comparing to other state-of-the-art wavelet based image
coders, including SPIHT and JPEG2000. One of the
bottlenecks of AGU-MHV coder is a relatively high
computational complexity of both partitioning of an
image into blocks and bit-plane coding of transform
coefficients.

In this paper another advanced DCT-based image
coder (ADCTC) based on partition schemes is proposed.
It has much lower computational complexity than AGU-
MHV demonstrating a relatively similar performance.
ADCTC uses a simple cost function to find best partition
scheme, faster coding of DCT coefficients, and simple
method for coding signs of non-zero DCT coefficients.
Note that the task of sign coding for DCT and DWT
coefficients is quite actual [9-11] since signs often
occupy more than 20% of total data of compressed
images [10]. However, existed methods for sign
prediction and coding are slow and not effective for
large sizes of image blocks [10]. Therefore, in this paper
we propose a novel, fast and simple method for sign
coding that allows reducing the volume of data that
relate to signs by about 5% (i.e., we additionally save
about 1% of compressed data).

 Image

DCT in blocks:
8x8, 8x16, 16x8, 16x16,
…, 128x256, 256x256

Partition scheme

optimization

Quantization of

DCT coefficients

Frequency context
modeling and

additional quantization

Numbers of
significant binary

digits in DCT
coefficients

Low bits of
non-zero DCT

coefficients

Signs of non-
zero DCT

coefficients
Frequency

context modeling

QS

Compressed image

Binary arithmetical coding Binary arithmetical coding

PS coding

Fig. 1. Flow-chart of image compression in the proposed coder ADCTC

This paper is organized as follows. Section 2 describes
basic principles of operation of the coder ADCTC.
Section 3 provides comparison results for the standard
test set of grayscale images such as Lenna, Barbara, etc.
Section 4 deals with more detailed comparison of
performance for the coders JPEG, JPEG2000, and
ADCTC for an extended set of 16 images of standard
size 512x512 pixels. In Section 5, the same coders are
analyzed for the set of 8 high resolution natural images
(2288x1712 pixels) and image from a set of JPEG2000.
ADCTC coder is publically available in [12].

2. DESCRIPTION OF THE PROPOSED CODER

Fig. 1 presents the flow-chart of gray-scale still image
compression by ADCTC. Image decoding is carried out
in inverse order. After decoding, fast post-filtering for
blocking artifact removal (deblocking) is performed as
in [8, 13, 14].
 Let us describe a process of image compression by
ADCTC. At the very beginning, optimization of the
modified horizontal-vertical partition scheme (PS) [8] is
carried out. Image is divided into blocks of possible
sizes: 8x8, 8x16, 16x8, 16x16, 16x32, 32x16, 32x32,
32x64, 64x32, 64x64, 64x128, 128x64, 128x128,
128x256, 256x128, and 256x256 pixels. Moreover, for
images that have both sides less than 1024 pixels, the
maximal size of blocks we have used were 64x64 pixels.
If images are larger but both sides have less than 2048
pixels, the largest allowed block size is 128x128 pixels.
This is the first difference of ADCTC with respect to our
earlier coder [8].
 While performing PS optimization, such a variant of
block division into two new ones is taken that has
smaller value of a cost function E. Ideally, an entropy
would be the best cost function to be used here, but due
to the fact that often we have to deal with a small block
sizes (thus, not enough statistics in each block to
calculate an entropy) a more robust empirically found
cost function is used:

)/1ln(
1

QSXE
N

i
i∑

=
+= , (1)

where QS denotes a quantization step for lossy
compression, N is a total number of DCT coefficients in
blocks that relate to a given variant of division, Xi is an
i-th among these coefficients.
 The use of the cost function (1) is to considerably
reduce a PS optimization time in comparison to [8]. Note
that [8] requires a preliminary compression and
decompression of an image for all allowable sizes of
blocks in order to estimate a cost function.
 Next we describe how ADCTC carries out coding
NOSB. DCT coefficient NOSB is determined by the
length of its binary code representation (see Fig. 2). Just
this number is coded and all smaller-order bits are
passed to output bit-stream without compression. Note
that such a coding procedure is much faster than separate

bit-plane coding [8] but it requires more delicate context
modeling.

Absolute Binary NOSB
 value representation

 0 0000000000000000 0

 1 0000000000000001 1

 5 0000000000000101 3

 12 0000000000001100 4

 81 0000000001010001 7

Fig. 2. Explanation of NOSB determination

 Using DCT coefficients already coded till the
moment, one model is selected from the set of
probability models. This model is used for coding
NOSB, after this updating of this model is performed.
Similarly to [8], the values of coefficients that are
displaced from a given one by 1, 2, or 3 positions are
taken into account in the model selection (see Fig. 3).

3-rd neighborhood
 2-nd neighborhood
 1-st neighb.
 X

Fig. 3. Context taken into account for coding X.

 A maximal NOSB is calculated in the 1-st
neighborhood (maxr1), then, a maximal NOSB is found
for the 2-nd (maxr2) and the 3-rd (maxr3)
neighborhoods. After this, a number of probability
model in the model set is determined as maxr1+K*C25.
Here C25 is the maximal allowed binary number (for
ADCTC C25:=25). The context number K is determined
according to the following rules:

IF maxr2=maxr1 THEN
 IF maxr3≤maxr1 THEN K:=1
 ELSE K:=2
ELSE
 IF maxr2<maxr1 THEN K:=3
 ELSE
 IF maxr2=maxr1+1 THEN
 IF km=1 THEN K:=4
 ELSE K:=5
 ELSE K:=6.

 Here km is the number of coefficients in the 2-nd
neighborhood that have NOSB equal to maxr1+1.
 Simultaneously with determination of the context K,
additional quantization is carried out. In the case when
maxr1=0 and some coded coefficient absolute value
before quantization has been smaller than a threshold Tr
(empirically for ADCTC we have set Tr=0.63QS) and K
≠6, then a coded coefficient is assigned zero value.

Table 1. Comparative analysis of coding efficiency

bpp Image JPEG JPEG
2000 SPIHT X-W

1999
GLBT
16x32 E-CEB AGU

32x32
AGU
MHV ADCTC

Lenna 39.44 40.33 40.46 41.21 40.43 40.43 40.50 40.85 40.89
Barbara 37.19 38.07 37.45 39.12 38.43 38.38 39.26 39.91 39.96
Baboon 28.63 29.11 29.17 - - - 29.70 30.27 29.98
Goldhill 36.18 36.54 36.55 37.34 36.78 37.04 37.03 37.38 37.31
Peppers 37.33 38.17 38.37 - - - 38.33 38.91 38.92

1

Patterns 31.01 35.80 28.83 - - - 38.55 43.81 44.17
Lenna 36.29 37.27 37.25 37.87 37.33 37.46 37.51 37.86 37.90

Barbara 32.23 32.87 32.10 34.48 33.94 33.75 34.65 35.28 35.38
Baboon 25.26 25.57 25.64 - - - 26.12 26.39 26.26
Goldhill 32.88 33.24 33.13 33.75 33.42 33.60 33.65 33.81 33.87
Peppers 34.82 35.80 35.82 - - - 35.55 36.04 36.17

0.5

Patterns 22.23 28.46 20.51 - - - 30.66 32.51 33.45
Lenna 33.06 34.15 34.14 34.76 34.27 34.43 34.50 34.75 34.95

Barbara 28.19 28.89 28.13 30.60 30.18 29.76 30.77 31.21 31.19
Baboon 22.91 23.18 23.26 - - - 23.69 23.77 23.71
Goldhill 30.21 30.53 30.56 30.98 30.84 30.94 31.09 31.22 31.24
Peppers 32.15 33.54 33.51 - - - 33.32 33.95 33.98

0.25

Patterns 17.36 22.60 16.25 - - - 25.13 26.39 26.80

 This is an adaptive analog of a “dead zone
quantization” that results in special increasing of zeroes’
number for those probability models for which this is
beneficial.
 For DCT coefficients with indices [0,0], [1,0], and
[0,.] (all first row of DCT coefficient block), separate
sets of frequency models are used. Similarly, separate
sets are used for blocks that have size up to 32x32 pixels
and other ones.
 For coding of signs of non-zero coefficients, context
modeling is used as well (see Fig. 4).

 a

1) 3) b

b c 2) c

a Y a b c Y Y

Fig. 4. Contexts taken into account for coding sign of a
non-zero coefficient Y

 Context 1) is taken into account as follows:

IF (a=0)or(b=0)or(c=0) THEN k1:=2
ELSE
 IF num(+,a,b,c) IN [1,3] THEN k1:=0
 ELSE k1:=1;

 The function num(+,a,b,c) calculates the number of
positive values among a,b,c.
 Context 2) is taken into consideration as:

IF (a>0)and(b>0)and(c>0) THEN k2:=0
ELSE IF (a<0)and(b>0)and(c<0) THEN k2:=0
ELSE IF (a<0)and(b<0)and(c<0) THEN k2:=1
ELSE IF (a>0)and(b<0)and(c>0) THEN k2:=1
ELSE k2:=2.

 Context 3) is taken into account similarly to Context
2), in this case the value k3 is calculated.
 Finally, the number of probability model for sign
coding is calculated as 9k1 + 3k2 + k3.

3. COMPARATIVE ANALYSIS OF R-D

PERFORMANCE OF THE PROPOSED CODER

In this section we compare R-D performance of the
proposed ADCTC coder to other known and most
advanced coders. Such comparison occurs to be complex
because not all coders described in literature have
available executable files. Besides, performance of some
coders has not been analyzed for some test images.
 First of all, we consider well established coders such
as JPEG [4], JPEG2000 [15], and SPIHT [5]. For
correctness of comparison, a version of JPEG that uses
uniform quantization and fast post-filtering like one
applied in [8] is used. Since we apply such JPEG
variant, it produces larger PSNR than the conventional
JPEG.
 Besides, one of the best wavelet based coder [16] (X-
W 1999), a coder based on lapped orthogonal transform
[2] (GLBT), a coder of the same authors that operates
with 8x8 blocks [9] (E-CEB) as well as our earlier
coders AGU [13] and AGU-MHV [8] will be also used
for comparison. The results of such a comparison for
bpp=1, 0.5, and 0.25 are given in Table 1.
 ADCTC and AGU-MHV in all considered cases
except one provide better performance than other coders.
Note that the coder [16] is not available and the results
are given as in [16]. The proposed coder ADCTC
produces the results that are either better or slightly
worse than AGU-MHV. This evidences in favor of high
quality of the designed context models avoiding a usage
of slow bit-plane coding.
 It is also worth noting that for JPEG and JPEG2000
decompressed image quality differs only a little (by

0.5…1 dB on the average), although this is mainly due
to a post-filtering (deblocking) of JPEG decompressed
images.

a)

b) c)

Fig.5. Fragments of the decoded test image Barbara,
bpp=0.25: a) JPEG, b) JPEG2000, c) ADCTC

Fig.6. MHV PS for ADCTC for image Barbara
bpp=0.25
Fig. 5 presents decompressed fragments for the test
image Barbara for the coders JPEG, JPEG2000, and
ADCT. The advantages of ADCTC especially for
textured fragments can be seen well.
 Fig. 6 presents the PS obtained for ADCTC for the
image Barbara, bpp=1. Fig. 7 shows the PS that has been
obtained for another compression ratio - bpp=0.25. As it
can be seen, large size blocks for ADCTC correspond to
either image homogeneous regions or to fragments that
have a regular texture.

Fig.7. MHV PS for ADCTC for image Barbara, bpp=1

One more tendency is observed. If QS increases, average
block size for PS also become larger.

4. EXTENDED COMPARISON OF JPEG,
JPEG2000 AND ADCTC FOR LOW-RES IMAGES
In this section we will compare performance of ADCTC
to JPEG and JPEG2000 on a set of 16 test images of size
512x512 pixels (available in [12]). Table 2 presents
corresponding PSNR results for five different bitrates. In
all cases ADCTC produces better results than
JPEG2000. Due to good spatial adaptivity, ADCTC
provides by more than 5 dB higher PSNR than
JPEG2000.
 Fig. 8 depicts the plots of PSNR vs bitrate for the
compared techniques that have been obtained for entire
test set. As can be seen, the ADCTC overcomes
JPEG2000 by more than JPEG2000 overcomes JPEG.
 In turn, Fig. 9 demonstrates that for almost entire
range of considered bpp values (calculated for ADCTC),
this method produces by more than 1.3 times better
compression ratio than JPEG2000.

Table 2. Comparative analysis of coding efficiency of JPEG, JPEG2000 and ADCTC for set of 512x512 pixels images
JPEG JPEG2000 ADCTC Image

bpp=2 1 0.5 0.25 0.125 bpp=2 1 0.5 0.25 0.125 bpp=2 1 0.5 0.25 0.125
Airfield 35.23 30.81 27.95 25.33 23.12 36.24 31.52 28.33 25.59 23.52 36.97 31.78 28.68 26.13 23.91
Baboon 33.96 28.63 25.26 22.91 21.29 34.77 29.11 25.57 23.18 21.68 35.89 29.98 26.26 23.71 21.99
Barbara 42.41 37.19 32.23 28.19 25.17 43.79 38.07 32.87 28.89 25.76 45.59 39.96 35.38 31.19 27.85

Boat 40.95 36.05 32.84 29.63 26.82 41.91 36.68 33.34 30.16 27.41 43.11 37.48 33.98 30.86 28.06
Cartoon 45.93 35.11 28.02 23.18 20.12 49.01 37.12 29.44 24.01 20.55 50.24 37.98 30.32 25.04 21.31
Depart 43.48 38.14 33.93 30.55 27.60 44.61 38.94 34.43 30.93 28.06 45.65 39.64 35.23 31.72 28.79
Family 41.49 35.57 31.31 28.18 25.74 42.92 36.27 31.67 28.49 26.22 43.64 37.01 32.34 29.00 26.56

Fly 47.89 43.01 37.58 33.10 29.61 48.84 44.17 38.84 34.08 30.63 50.11 44.89 39.54 34.89 31.27
Goldhill 40.82 36.18 32.88 30.21 28.03 41.82 36.54 33.24 30.53 28.49 42.89 37.31 33.87 31.24 29.08

Grass 26.65 21.49 18.61 16.80 15.71 26.79 21.39 18.79 16.96 15.85 28.26 22.46 19.18 17.20 15.91
Lena 43.73 39.44 36.29 33.06 29.73 44.66 40.33 37.27 34.15 31.02 46.00 40.89 37.90 34.95 31.91
Map 27.11 22.09 19.30 17.53 16.49 27.15 21.80 19.26 17.65 16.65 28.29 22.65 19.61 17.86 16.74

Patterns 45.20 31.01 22.23 17.36 15.36 41.25 35.80 28.46 22.60 18.67 60.10 44.17 33.45 26.80 22.30
Peppers 41.75 37.47 35.03 32.65 29.69 42.98 38.17 35.80 33.54 30.79 44.18 38.92 36.17 33.98 31.46

Pole 49.91 43.83 37.21 32.06 27.93 49.83 45.53 38.37 32.98 28.84 51.35 46.40 39.91 34.46 30.39
Ponom 31.69 26.35 23.24 21.25 19.92 32.09 26.41 23.24 21.46 20.17 33.23 27.20 23.75 21.65 20.34

Table 3. Comparison of coding efficiency for JPEG, JPEG2000 and ADCTC for the set of 2288x1712 pixels images
JPEG JPEG2000 ADCTC Image

bpp=2 1 0.5 0.25 0.125 bpp=2 1 0.5 0.25 0.125 bpp=2 1 0.5 0.25 0.125
Pole 49.33 44.62 41.90 39.19 35.17 49.29 45.22 42.46 40.05 36.54 51.17 46.23 42.95 40.88 38.33

Stones 35.59 29.80 25.51 22.26 19.87 36.69 30.25 25.80 22.50 20.18 38.23 31.75 26.85 23.01 20.32
Sasha 35.65 29.96 25.72 22.58 20.25 36.73 30.22 26.08 22.97 20.64 39.06 32.44 27.54 23.81 21.27
Car 38.19 32.48 28.38 25.44 23.20 38.91 32.82 28.61 25.55 23.55 40.78 34.39 29.66 26.12 23.77

Pond 43.33 35.66 30.56 26.63 23.56 45.38 36.70 31.03 27.08 24.38 47.23 38.42 32.80 28.48 25.17
Stubs 42.38 36.72 32.82 29.60 27.06 43.41 37.36 33.18 30.11 27.54 44.95 38.72 34.16 30.58 27.92

Flowers 40.65 35.45 31.26 27.45 24.21 42.12 36.32 31.89 28.07 24.86 43.50 37.49 32.97 28.90 25.47
Macro 49.61 46.96 43.92 41.90 40.13 50.55 46.79 44.39 42.78 41.69 52.90 48.07 44.90 43.04 41.94

Fig.8. Comparison of the coders JPEG, JPEG2000, and
ADCTC for entire set of test images

Fig.9. The plots showing how many times larger
memory is required for JPEG2000 and JPEG to provide
the same PSNR as for the ADCTC

5. EXTENDED COMPARISON OF JPEG,
JPEG2000 AND ADCTC FOR HIGH

RESOLUTION IMAGES

In the previous Section we have compared ADCTC and
JPEG2000 for images of size 512x512. However, in
practice it is more interesting to analyze coder’s
effectiveness for high resolution images of a larger size
typical for modern digital cameras.
 A test set of 2288x1712 pixels images is obtained by
the first author of this paper using digital camera
OLYMPUS C765-UZ [12]. Images have been saved in
TIFF format (without any compression). The test set
contains images with various characteristics, such as
large homogeneous regions, highly textured images, as
well as images containing a lot of details.
 The compression results, collected in Table 3 clearly
demonstrate advantages of ADCTC with respect to
JPEG and JPEG2000 even better than for the case of
512x512 pixel images (see Fig 10 and Fig. 11).
 As seen, for bpp=2 and bpp=1, typical for digital
pictures, ADCTC provides by 1.4 times better
compression than JPEG2000 and by 1.55 times better
than JPEG.

Table 4. Comparison of coding efficiency for JPEG, JPEG2000 and ADCTC for the test image CATS

0.8
1

1.2
1.4
1.6
1.8

2

0 0.5 1 1.5 2

bpp

relative bpp ADCTC JPEG2000 JPEG

21
23
25
27
29
31
33
35

0 0.5 1 1.5 2

bpp

PSNR, dB JPEG JPEG2000 ADCTC

JPEG JPEG2000 ADCTC Image
bpp=2 1 0.5 0.25 0.125 bpp=2 1 0.5 0.25 0.125 bpp=2 1 0.5 0.25 0.125

Cats 50.53 42.67 36.39 32.47 29.28 42.05 40.57 36.45 32.56 29.90 57.08 46.51 39.92 35.28 31.86

Fig.10. Comparison of the coders JPEG, JPEG2000, and
ADCTC for entire set of the test images in Fig. 10

Fig.11. The plots showing how many times larger
memory is required for JPEG2000 and JPEG to provide
the same PSNR as for the ADCTC

 On another large test image “Cats” (see Table 4) that
has been used for testing a performance of JPEG2000,
ADCTC produces by 6 dB better PSNR than JPEG2000
for the bit rate of 1bpp.

6. CONCLUSIONS
 This paper presents effective DCT based coder
ADCTC for lossy image compression. This coder has
demonstrated better R-D performance than state-of-the-
art coders for a wide set of test images.
 ADCTC and all the sets of the test images can be
downloaded from [12].

7. REFERENCES
[1] K. Rao, P. Yip, Discrete Cosine Transform, Algorithms,

Advantages, Applications. Academic Press, 1990.
[2] T.D. Tran, T.Q. Nguyen, “A lapped transform progressive

image coder”, in IEEE Proc. of the Int. Symp. on Circuits
and Syst. ISCAS '98, Vol. 4, 1998, pp. 1-4.

[3] Wavelet Image and Video Compression, Edited by Pankaj
N. Topiwala, Boston, USA: Kluwer Acad. Publ., 1998.

[4] G.K. Wallace, The JPEG Still Picture Compression
Standard, Comm. of the ACM, Vol. 34, 1991, pp. 30-44.

[5] A. Said, W.A. Pearlman, A new fast and efficient image
codec based on the partitioning in hierarchical trees,

IEEE Trans. on Circuits Syst. Video Technol., Vol. 6,
1996. - pp. 243-250.

[6] D. Taubman, High performance scalable image
compression with EBCOT, IEEE Trans. Image Processing,
vol. 9, 2000. - pp. 1158–1170.

[7] D. Taubman, M. Marcellin, JPEG 2000: Image
Compression Fundamentals, Standards and Practice.
Boston: Kluwer, 2002.

[8] N.N. Ponomarenko, V.V. Lukin, K.O. Egiazarian, J.T.
Astola, High Quality DCT Based Image Compression
Using Partition Schemes, IEEE Signal Processing Letters,
Vol. 14, 2007, pp. 105-108.

[9] C.Tu, T.D.Tran, Context-Based Entropy Coding of Block
Transform Coefficients for Image Compression, IEEE
Trans. on Image Proc., vol. 11, 2002, pp. 1271-1283.

[10] N.N. Ponomarenko, A.V. Bazhyna, K.O. Egiazarian,
Prediction of signs of DCT coefficients in block-based
lossy image compression, Proc. of the SPIE Conf. Image
Proc.: Alg. and Syst. V, SPIE Vol. 6497, January, 2007.

[11] A. Deever and S. S. Hemami, What’s your sign?: Efficient
sign coding for embedded wavelet image coding, in Proc.
2000 Data Compr. Conf., 2000, pp. 273–282.

[12] ADCTC software and set of test images:
http://www.ponomarenko.info/adct.htm

[13] N.N. Ponomarenko, V.V. Lukin, K.O. Egiazarian, J.T.
Astola, DCT Based High Quality Image Compression, in
Proc. Scand. Conf. on Image Analysis, Springer Series:
Lect. Notes in Comp. Sc., vol.3540, 2005, pp.1177-1185.

[14] K. Egiazarian, J. Astola, M. Helsingius, P. Kuosmanen,
Adaptive denoising and lossy compression of images in
transform domain, Journal of Electronic Imaging, vol. 8,
1999, pp. 233-245.

[15] Kakadu JPEG 2000 SDK Home page. [Online]. Available:
http://www.kakadusoftware.com/

[16] Z. Xiong, X. Wu, Wavelet image coding using trellis
coded space-frequency quantization, in IEEE Signal
Processing Letters, Vol. 6, Issue 7, 1999, pp. 158-161.

0.8

1

1.2

1.4

1.6

0 0.5 1 1.5 2

bpp

relative bpp ADCT JPEG200 JPE

23
25
27
29
31
33
35
37
39
41
43

0 0.5 1 1.5 2

bpp

PSNR,
JPE JPEG200 ADCTC

